

Course Outline

- Quick Looking: Bottom Trawl Survey
- One-tailed selectivity model (S -shaped or Selection Ogive Model) in trawlers
- Proportion Retained Method
- Probability of Captured Method
- Selection Factor (SF.)

The otter board trawl (OBT)

Notices for collecting data

- Equal towing time in the same survey cruise
- Catchability coefficient is a function of towing time
- For research purpose: towing time should be 0.5 hour to 1 hour
- Easy to compute CPUE
- Well-designed fishing logsheet

Deck Sampling and Catch Recording Procedures

Cautions!!

- Before the survey begins, make sure that the equipment and working conditions are ready and un-risk
- The ship crew must be instructed "not to remove any part of the catch before the sampling has been completed"

Deck Sampling and Catch Recording Procedures

Fishery Biologist must response the following tasks:
Collecting LFD (no. in codend and no. in covered net, if you set up the experiment)
Others biological information (sex, maturity. parasites etc.)
Collecting and preserving specimens for onshore studies
Collecting oceanographic data

Selectivity Function

- Exploited stock
- Age at first recruit $\left(t_{r}\right)=$ pre-exploited phase
- Age at first capture $\left(t_{c}\right)=$ fully exploited
- Selectivity: function with age (=size of fish) / size of gear
- In this case: size of gear $=$ codend mesh size

Codend Mesh Size

- The length of the "stretched" whole mesh 2*d

Selection Ogive Curve

Proportion Retained

$$
\begin{aligned}
& L_{50 \%}=\frac{S_{1}}{S_{2}} \\
& L_{25 \%}=\frac{\left(S_{1}-\ln 3\right)}{S_{2}} \\
& L_{75 \%}=\frac{\left(S_{1}+\ln 3\right)}{S_{2}} \\
& S F=\frac{L_{50 \%}}{\text { mesh size }}
\end{aligned}
$$

Selection Ogive Curve

$$
\begin{aligned}
& S_{L}=\frac{1}{1+e^{\left(s_{1}-s_{2} L\right)}} \\
& \text { Logistic Function } \\
& \text { Unknown Parameters: } s_{1} \text { and } s_{2} \\
& \text { NONLINSAR MODEL }
\end{aligned}
$$

Methods for Estimating Selectivity Curve and L_{c}

- Proportion Retained Method
- Probability of Captured Method

Proportion Retained

- Need to set up an experiment (research vessel)
- Well-designed replication (spatial, temporal)

Proportion Retained

$$
\begin{aligned}
& S_{L}=\frac{1}{1+e^{\left(S_{1}-S_{2} L\right)}} \\
& \text { Linear transformed } \\
& \qquad S_{L}=\frac{\text { no. of fish at lengthL in cod end }}{\text { no. of fish at lengthL in codend }+ \text { coverednet }}
\end{aligned}
$$

$$
\ln \left(\frac{1}{S_{L}}-1\right)=\left(S_{1}-S_{2} L\right.
$$

1. EXCEL for basic calculation (today)
2. SPSS or R Program for nonlinear estimation (self-study)
3. FISAT

Probability of Captured Method

- Useful for covered net experiment is unavailable or
- Data collection from commercial fisheries

$$
S_{L}=\frac{1}{1+e^{\left(S_{1}-S_{2} L\right)}}
$$

$$
S_{L}=\text { Probability of cumulative no. of landed }
$$

Selection Factor

- Escaping chance: shape and body depth of fish compared to mesh size
- Assumption: "d $\mathrm{d}_{50 \%}$ (body depth at which 50% of the fish are retained) is a function of mesh size"

$$
d_{50 \%}=A \times \text { meshsize }
$$

- Body depth is a direct proportion to body length, hence

$$
L_{50 \%}=S . F . \times \text { mesh size }
$$

Case Study

- One-tailed Selectivity curve by two methods:
- Proportion Retained
- Probability of Capture
- What will be happened if we enlarge the mesh size to be 5.0 cm and reduced the mesh size to be 2.5 cm ? (application of selection factor)
- Length at first maturity (Probability of Capture)

Proportion Retained

$9-10$	0	1
$10-11$	1	6
$11-12$	2	7
$12-13$	2	4
$13-14$	7	5
$14-15$	30	13
$15-16$	61	8
$16-17$	27	3
$17-18$	7	0
$18-19$	4	1

